Molecular physiology of the synapse

Rafael Fernández Chacón
Campus Hospital Universitario Virgen del Rocío
Avda. Manuel Siurot, s/n.
41013 · Sevilla

Laboratory: 108

Rafael Fernández Chacón

Back to program
  1. Group members
  2. Research areas
  3. Publications

Group: Molecular physiology of the synapse

Group members Molecular physiology of the synapse
  • Arroyo Saborido, Alejandro.Laboratory Technician (FP2). Technician.
  • Cabrera Serrano, Macarena.Degree in Medicine & Surgery. Faculty Staff - Neurología, Pos-MIR.
  • Cantero Nieto, Gloria.
  • Fernández Chacón, Rafael.MD/PhD. Associate Professor (University of Seville).
  • García-Junco Clemente, Pablo.Doctor en Biología. Postdoctoral.
  • Gómez Sánchez, Leonardo.Degree in Biology. PhD student.
  • Jurado Galán, Noemí.Técnico Superior Anatomía Patológica
  • Lavado Roldán, Ángela.Degree in Biology. PhD student.
  • Martínez López, José Antonio.Telecommunications Engineer. PhD student.
  • Mavillard Saborido, Fabiola.PhD in Biología. Post-doctoral fellow.
  • Muñoz Bravo, José Luis.Ldo. en Biología
  • Nieto González, José Luis.PhD in Biology. Post-doctoral fellow Juan de la Cierva.
  • Paradas López, Carmen.MD/PhD. Specialist in Neurology.
  • Rivero Mena, María del Carmen.Laboratory Technician (FP2). Technician.
  • Servián Morilla, Emilia.Doctora en Biología.
  • Valenzuela Villatoro, Marina.Lda. en Biotecnología. Predoctoral.

Research areas

Molecular mechanisms of the functional and structural maintenance of the synapse.

The synapses are the points of contact where neuronal communication takes place that underlies the correct operation of the brain. The nerve endings house synaptic vesicles loaded with neurotransmitters that are released after the arrival of a nerve impulse. This phenomenon can occur thousands of times a day in terminals that are very remote from the neuronal body, as in the case of motor neurones. The nerve endings probably have molecular machinery that allows them to maintain synaptic function independently of the neuronal body. Our laboratory is interested in identifying the components of this machinery and in understanding their mode of operation. A key element is a protein of the synaptic vesicles called Cysteine String Protein-alpha (CSP-alpha). This protein is related to molecular chaperones that participate in the folding and unfolding of proteins. Strangely, genetically modified mice that lack this protein display a neurological phenotype produced by an early degeneration of their nerve endings. Our laboratory uses cultivated neurons from these mice, that form synapses "in vitro" and we study the details of the neuronal communication by means of electro-physiological techniques. In collaboration with the Center of Animal Production and Experimentation of the University of Seville, we have generated transgenic mice that express a green fluorescent protein (synaptopHluorin) that illuminates the nerve endings during synaptic activity. These approaches will be used to understand the functional modifications of the synapse that precede the neurodegeneration of the neurons of the central and peripheral nervous system.

International Journals
Rozas JL, Gómez-Sánchez L, Mircheski J, Linares-Clemente P, Nieto-González JL, Vázquez ME, Luján R, Fernández-Chacón R.
Motorneurons Require Cysteine String Protein-α to Maintain the Readily Releasable Vesicular Pool and Synaptic Vesicle Recycling.
Neuron. 2012 Apr 12;74(1):151-65.
Rozas JL, Gómez-Sánchez L, Tomás-Zapico C, Lucas JJ, Fernández-Chacón R.
Increased neurotransmitter release at the neuromuscular junction in a mouse model of polyglutamine disease
J Neurosci. 2011 Jan 19;31(3):1106-13.
Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O, Jensen K.
Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression.
Hippocampus. 2011 Apr;21(4):422-33. doi: 10.1002/hipo.20758.
Fierro-González JC, González-Barrios M, Miranda-Vizuete A, Swoboda P.
The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans.
Biochem Biophys Res Commun. 2011 Mar 18;406(3):478-82.
Fierro-González JC, Cornils A, Alcedo J, Miranda-Vizuete A, Swoboda P.
The thioredoxin TRX-1 modulates the function of the insulin-like neuropeptide DAF-28 during dauer formation in Caenorhabditis elegans.
PLoS One. 2011 Jan 27;6(1):e16561.
Stenvall J, Fierro-González JC, Swoboda P, Saamarthy K, Cheng Q, Cacho-Valadez B, Arnér ES, Persson OP, Miranda-Vizuete A, Tuck S.
Selenoprotein TRXR-1 and GSR-1 are essential for removal of old cuticle during molting in Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1064-9.
Rackham O, Shearwood AM, Thyer R, McNamara E, Davies SM, Callus BA, Miranda-Vizuete A, Berners-Price SJ, Cheng Q, Arnér ES, Filipovska A.
Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors.
Free Radic Biol Med. 2011 Mar 15;50(6):689-99.
Calvo AC, Pey AL, Miranda-Vizuete A, Døskeland AP, Martinez A.
Divergence in enzyme regulation between Caenorhabditis elegans and human tyrosine hydroxylase, the key enzyme in the synthesis of dopamine.
Biochem J. 2011 Jan 27;434(1):133-41.